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A second-order method is developed for the numerical solution of the initial-value prob-
lems u′ ≡ du/dt = f1(u, v), t > 0, u(0) = U 0 and v′ ≡ dv/dt = f2(u, v), t > 0,
v(0) = V 0, in which the functions f1(u, v) = B+u2v− (A+ 1)u and f2(u, v) = Au−u2v,
where A and B are positive real constants, are the reaction terms arising from the mathe-
matical modelling of chemical systems such as in enzymatic reactions and plasma and laser
physics in multiple coupling between modes. The method is based on three first-order meth-
ods for solving u and v, respectively. In addition to being second-order accurate in space
and time, the method is seen to converge to the correct fixed point (U∗ = B, V ∗ = A/B)
provided 1−A+B2 > 0. The approach adopted is extended to solve a class of non-linear
reaction–diffusion equations in two-space dimensions known as the “Brusselator” system.
The algorithm is implemented in parallel using two processors, each solving a linear al-
gebraic system as opposed to solving non-linear systems, which is often required when
integrating non-linear partial differential equations (PDEs).

1. Introduction

The importance of oscillations in biochemical systems has been emphasized by
a number of authors. For instance, Turing [11] showed that when certain reactions are
coupled with the process of diffusion, it is possible to obtain a stable spatial pattern
(this laid the foundation of the theory of morphogenesis). The so-called Brussels
school [5–10] developed and analysed the behaviour of a non-linear oscillator [7,10]
associated with the chemical system

Bin→X, (1a)

Ain + X→Y + D, (1b)

2X + Y→ 3X, (1c)

X→E, (1d)

 J.C. Baltzer AG, Science Publishers



298 E.H. Twizell et al. / A second-order scheme for the Brusselator system

in which Bin and Ain are input chemicals, D and E are output chemicals and X and
Y are intermediates. The chemical system (1), known as the “Brusselator” system, is
important in that it admits limit-cycle oscillations and yet contains only two dependent
variables (X and Y) thus enabling the use of two-dimensional mathematical systems [8].

It is known [1] that the trimolecular reaction step (1c) arises in the formation of
ozone by atomic oxygen via a triple collision, in enzymatic reactions, and in plasma and
laser physics in multiple couplings between modes. Tyson [13] notes that the system (1)
satisfies the necessary (but not sufficient) requirements that “a chemical system be open,
non-linear, and far from equilibrium in order to manifest more interesting behaviour
other than exponential decay to a homogeneous steady state”. The kinetic equations
associated with (1) are given by [10]

∂X

∂t
= k1B + k2X

2Y − k3AX − k4X +Dx∇2X,
(2)

∂Y

∂t
= k3AX − k2X

2Y +Dy∇2Y.

The rate constants k1 and k2 are superfluous, since the rate of steps (1a) and (1b) can
be varied by changing the parameters B and A [13]. Similarly, the rate constant k3 of
the autocatalytic step (1c) can be made unity by scaling time. Following Tyson [13],
the constant k4 is given the value unity.

Let u = u(x, y, t) and v = v(x, y, t) represent the concentrations of two reaction
products P1 and P2 at time t, A and B be constant concentrations of two input reagents,
and α (a constant) represent Dx and Dy and L the reactor length. Then, the partial
differential equations associated with the “Brusselator” system are given by (see, for
instance, [1])

∂u

∂t
=B + u2v − (A+ 1)u+ α

(
∂2u

∂x2 +
∂2u

∂y2

)
, 0 < x, y < L, t > 0, (3a)

∂v

∂t
=Au− u2v + α

(
∂2v

∂x2 +
∂2v

∂y2

)
, 0 < x, y < L, t > 0, (3b)

subject to Neumann boundary conditions on the boundary ∂Ω of the square Ω defined
by the lines x = 0, y = 0, x = L, y = L, given by

∂u(0, y, t)
∂x

=
∂u(L, y, t)

∂x
= 0, t > 0,

∂u(x, 0, t)
∂y

=
∂u(x,L, t)

∂y
= 0, t > 0,

∂v(0, y, t)
∂x

=
∂v(L, y, t)

∂x
= 0, t > 0,

∂v(x, 0, t)
∂y

=
∂v(x,L, t)

∂y
= 0, t > 0,

(4)
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and initial conditions

u(x, y, 0) = f (x, y), (x, y) ∈ Ω ∪ ∂Ω,

v(x, y, 0) = g(x, y), (x, y) ∈ Ω ∪ ∂Ω.
(5)

In (5), f and g are given continuous functions of x and y.
A number of methods have been proposed in the literature for the solution and

stability analyses of this system, notably by Adomian [1], the Brussels school [5–10],
and Tyson [13]. It is common knowledge that, for problems involving reaction terms
such as (3), the numerical treatment of such reaction terms has, arguably, the most
influence on the numerical results (see, for instance, [12]).

It is therefore important to consider the behaviour of the reaction terms given
by (3) with α = 0. This will be discussed in section 2 where a novel second-order
finite-difference method will be developed. The fixed point of the numerical scheme
will be analysed. In section 3, numerical experiments are reported that show that the
method converges to the critical point for values of A and B for which 1−A+B2 > 0.
Extension to the case of non-vanishing α resulting in the full “Brusselator” system, is
considered in section 4, where a second-order numerical method is developed which
may be implemented in parallel using two processors, each solving a single linear
algebraic system at every time step.

2. Numerical method for the diffusion-free case

2.1. Analysis of the critical point of the system

Consider the diffusion-free “Brusselator” system given by (3) with α = 0

du
dt
≡ f1(u, v) = B + u2v − (A+ 1)u, t > 0, u(0) = U0,

dv
dt
≡ f2(u, v) = Au− u2v, t > 0, v(0) = V 0,

(6)

in which u = u(t), v = v(t) and A and B are positive real constants. It can be
shown that the only critical point of the ordinary differential equation (ODE) system
is (u∗, v∗) = (B,A/B). The Jacobian, J∗, at the critical point (u∗, v∗) is given by

J∗ =

[
A− 1 B2

−A −B2

]
(7)

and its eigenvalues λ1,2 satisfy the characteristic equation

λ2 +
(
1−A+B2)λ+B2 = 0. (8)

The roots of this equation, the eigenvalues of J∗, clearly depend on 1−A+B2 and
on the quantity ∆ ≡ (1−A+B2)2−4B2. These eigenvalues govern the stability of the
critical point and the existence, or otherwise, of a limit cycle. The stability properties
and the existence of a limit cycle are summarized in table 1 in relation to the four
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Table 1
Nature of critical point and existence of limit cycle.

Region 1−A+B2 ∆ Eigenvalues Type of critical point Limit cycle exists

1 >0 >0 Positive real Unstable node Yes
2 >0 <0 Positive real parts Unstable focus Yes

=0 <0 Imaginary Stable fine focus No
3 <0 <0 Negative real parts Stable focus No
4 <0 >0 Negative real Stable node No

Figure 1. Stability regions of the diffusion-free system.

regions of figure 1. Using Hopf theory [3,4], it may be shown that the critical point
loses its stability when A and B move from region 2 to region 3 of figure 1, across the
curve 1−A+B2 = 0. A Hopf bifurcation occurs as this curve is crossed and a stable
limit cycle exists for A and B in regions 1 and 2 but not for A and B in regions 3 and 4.

2.2. Numerical method for u

Starting with the initial-value problem

u′ ≡ du
dt

= B + u2v − (A+ 1)u, t > 0, u(0) = U0, (9)

the development of numerical methods may be based on approximating the derivative
in (9) by its first-order forward-difference approximant given by

du
dt

=
u(t+ `)− u(t)

`
+ O(`) as `→ 0, (10)

where ` > 0 is an increment in t (time step). Discretizing the interval t > 0 at the
points tn = n` (n = 0, 1, 2, . . .), the solution of (9) at the grid point tn is u(tn). The
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solution obtained by a numerical method at the point tn will be denoted by Un. Three
numerical methods for solving (9) based on approximating the time derivative in (9)
by (10) and making appropriate approximations for the linear and cubic terms in (9)
are given below:

M (1)
u : Un+1 = Un + `B + `

(
Un
)2
V n − `(A+ 1)Un,

M (2)
u : Un+1 = Un + `B + `

(
Un
)2
V n+1 − `(A+ 1)Un+1, (11)

M (3)
u : Un+1 = Un + `B + `UnUn+1V n − `(A+ 1)Un.

The associated local truncation errors of these three methods are, respectively,

L(1)
u =L(1)

u

[
u(t), v(t), `

]
=u(t+ `)−u(t)− `B− `

{
u(t)

}2
v(t) + `(A+ 1)u(t),

L(2)
u =L(2)

u

[
u(t), v(t), `

]
=u(t+ `)−u(t)− `B− `

{
u(t)

}2
v(t+ `) + `(A+ 1)u(t+ `),

L(3)
u =L(3)

u

[
u(t), v(t), `

]
=u(t+ `)−u(t)− `B− `u(t)v(t)u(t+ `) + `(A+ 1)u(t),

(12)
in which t = tn. It is easy to show that the Taylor series expansion of the functions
in (12) about t leads to

L(1)
u =

1
2
`2u′′ + O

(
`3
)

as `→ 0,

L(2)
u =

[
1
2
u′′ − u2v′ + (A+ 1)u′

]
`2 + O

(
`3
)

as `→ 0,

L(3)
u =

(
1
2
u′′ − uu′v

)
`2 + O

(
`3
)

as `→ 0,

(13)

where u and its derivatives (denoted by primes) are evaluated at some grid point t = tn.
Defining, now, a function L(e)

u by the linear combination

L(e)
u =

1
2

[
2L(3)

u + L(2)
u − L(1)

u

]
, (14)

gives

L(e)
u =

1
2

[
u′′ − 2uu′v − u2v′ + (A+ 1)u′

]
`2 + O

(
`3) as `→ 0. (15)

Differentiating the differential equation in (9) reveals that the coefficient of `2 in (15)
vanishes; thus,

L(e)
u = O

(
`3) (16)

as `→ 0. This implies that a second-order method for computing u can be constructed
by taking the linear combination M (3)

u + 1
2M

(2)
u − 1

2M
(1)
u and is given by[

1− `UnV n +
1
2
`(A+ 1)

]
Un+1 − 1

2
`
(
Un
)2
V n+1

=

[
1− 1

2
`(A+ 1)

]
Un − `

2

(
Un
)2
V n + `B. (17)
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This method involves Un+1 and V n+1, thus Un+1 cannot be calculated explicitly
from (17).

2.3. Numerical method for v

Following the approach used in section 2.2, a second-order method for finding v
may be shown to be

−`
(

1
2
A− UnV n

)
Un+1 +

[
1 +

1
2
`
(
Un
)2
]
V n+1

= V n +
1
2
`AUn +

1
2
`
(
Un
)2
V n. (18)

This scheme, like (17), also involves V n+1 and Un+1, hence V n+1 cannot be obtained
explicitly from (18).

However, in both (17) and (18), Un+1 and V n+1 occur linearly so that (17)
and (18) can be solved simultaneously to give

Un+1 =

[
1− 1

2 `(A+ 1)
]
Un + 1

2 `
2B(Un)2 + 1

2 `(U
n)3 − 1

4`
2(Un)3 + `B

1 + 1
2 `(A+ 1) + 1

2 `(U
n)2 + 1

4`
2(Un)2 − `UnV n

, (19)

and

V n+1 =
V n + `

[
AUn + 1

2 (A+ 1)V n − 1
2 (Un)2V n − Un(V n)2

]
1 + 1

2 `(A+ 1) + 1
2 `(U

n)2 + 1
4`

2(Un)2 − `UnV n

+
`2
[

1
2 AB −BUnV n + 3

4 (Un)2V n
]

1 + 1
2 `(A+ 1) + 1

2 `(U
n)2 + 1

4`
2(Un)2 − `UnV n

. (20)

2.4. Analyses of the fixed point

The expressions for Un+1 and V n+1 in (19) and (20) are of the forms

Un+1 = g1
(
Un,V n

)
,

V n+1 = g2
(
Un,V n

)
,

(21)

respectively, and it may be verified that the fixed point of (19) and (20) is U∗ = B,
V ∗ = A/B. Thus the fixed point of the numerical method (19), (20) is the same as
the critical point of the dynamical system (6). A crucial point of interest is whether
or not the fixed point of the difference system has the same stability properties as the
critical point of the ODE system (6).

Considering, first, the functions

g1(U ,V ) =
U − 1

2 `(A+ 1)U + 1
2 `

2BU2 + 1
2 `U

3 − 1
4 `

2U3 + `B

1 + 1
2 `(A+ 1) + 1

2 `U
2 + 1

4`
2U2 − `UV

, (22)
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g2(U ,V )

=
V + `AU + 1

2 `(A+ 1)V − 1
2 `U

2V − `UV 2 + 1
2 `

2AB − `2BUV + 3
4 `

2U2V

1 + 1
2 `(A+ 1) + 1

2 `U
2 + 1

4`
2U2 − `UV

(23)

it may be seen (after some tedious manipulations) that the resulting Jacobian J at the
fixed point (U = B and V = A/B) is given by

J =
1
Z

[
1− 1

2 `+ 1
2 `A+ 1

2 `B
2− 1

4 `
2B2 `B2

−`A 1 + 1
2 `−

1
2 `A−

1
2 `B

2− 1
4 `

2B2

]
, (24)

where Z = 1 + 1
2 `−

1
2 `A+ 1

2 `B
2 + 1

4 `
2B2, and its eigenvalues are given by

µ1 =
1 + 1

2 `(1−A+B2)− 1
4 `

2B2

1 + 1
2 `(1−A+B2) + 1

4 `
2B2

and µ2 =
1− 1

2 `(1−A+B2)− 1
4 `

2B2

1 + 1
2 `(1−A+B2) + 1

4 `
2B2

. (25)

It is clear from (25) that the denominators of µ1 and µ2 are always positive provided
1−A+B2 > 0 and ` > 0 and it is easy to show then that

|µ1| < 1 and |µ2| < 1 (26)

for any ` ∈ (0,∞). The inequalities in (26) are also true whenever 1−A+B2 = 0.
Thus a sufficient condition for the fixed point (B,A/B) to attract the solution sequence
generated by (19) and (20) is 1−A+B2 > 0.

Figure 2. Phase portraits of the diffusion-free system with A = 2.5 and B = 0.5 (region 1 of figure 1)
using the second-order scheme with ` = 0.01.
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3. Numerical verification

To verify the convergence properties of the numerical scheme {(19), (20)}, it was
tested on the initial-value problem (6). Of particular interest is the behaviour of the
method when 1−A+ B2 > 0. Extensive numerical experiments, taking values of A

Figure 3. Phase portraits of the diffusion-free system with A = 2.0 and B = 0.5 (region 2 of figure 1)
using the second-order scheme with ` = 0.01.

Figure 4. Phase portraits of the diffusion-free system with A = 1.2 and B = 0.5 (region 3 of figure 1)
using the second-order scheme with ` = 0.01.
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and B in the four regions of figure 1 with −8 6 U0, V 0 6 8 and a time-step ` = 0.01
were carried out. Of course, U0 and V 0 are concentrations so that non-positive values
are irrelevant, but the results show that the scheme {(19), (20)} performed well for
negative initial conditions, too. It was discovered that the scheme converged to the
fixed point U∗ = B, V ∗ = A/B whenever 1 − A + B2 > 0 (regions 1 and 2 of
figure 1). Phase portraits for B = 0.5 with A = 2.5, 2.0, 1.2 and 0.2 (regions 1, 2, 3

Figure 5. Phase portraits of the diffusion-free system with A = 0.2 and B = 0.5 (region 4 of figure 1)
using the second-order scheme with ` = 0.01.

Figure 6. Enlargement of figure 4 in the vicinity of the fixed point U∗ = 0.5, V ∗ = 2.4.
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and 4 of figure 1) are depicted in figures 2, 3, 4 and 5, respectively. An enlargement of
the area around the fixed point (U∗,V ∗) = (0.5, 2.4) of figure 4 is depicted in figure 6
and shows clearly that the solution sequence spirals into the fixed point. The limit
cycles are visible in figures 2 and 3.

4. The “Brusselator” reaction–diffusion equations

4.1. Introduction

The reaction–diffusion equations in the full “Brusselator” system are given by (3)
so that, on differentiating with respect to t,

utt − 2uutv − u2vt + (A+ 1)ut − α(uxxt + uyyt) = 0 (27)

and

vtt −Aut + 2uutv + u2vt − α(vxxt + vyyt) = 0, (28)

where, now, u = u(x, y, t), v = v(x, y, t), ux ≡ ∂u/∂x, etc.

4.2. Discretization and notations

Most modern texts on numerical analysis give an introduction to numerical so-
lutions of partial differential equations using the finite-difference approach (see, for
example, [2]). In the following sections a linear combination of first-order schemes
will be made to obtain second-order approximations to u and v.

Both intervals 0 6 x 6 L and 0 6 y 6 L are divided into N + 1 subintervals
each of width h, so that (N + 1)h = L and the time variable t is discretized in steps
of length `. Thus at each time level t = tn = n` (n = 0, 1, 2, . . .) the square Ω, and
its boundary ∂Ω, have been superimposed by a square mesh with N2 points within Ω
and N + 2 equally spaced points along each side of ∂Ω.

The solutions unk,m = u(xk, ym, tn) and vnk,m = v(xk, ym, tn) are sought at each
point (kh,mh,n`) in Ω∪ ∂Ω where k, m = 0, 1, 2, . . . ,N ,N + 1 and n = 0, 1, 2, . . . .
The notation Unk,m and V n

k,m will be used to distinguish the solutions of the numerical
methods from the theoretical solutions unk,m and vnk,m. It will be convenient to define
the vectors Un and Vn as

Un =
(
Un0,0,Un1,0, . . . ,UnN ,0,UnN+1,0;Un0,1,Un1,1,Un2,1, . . . ,UnN ,1,UnN+1,1;Un0,2,Un1,2,

Un2,2, . . . ,UnN ,2,UnN+1,2; . . . ;Un0,N+1,Un1,N+1,Un2,N+1, . . . ,UnN+1,N+1

)T

and

Vn =
(
V n

0,0,V n
1,0, . . . ,V n

N ,0,V n
N+1,0;V n

0,1,V n
1,1,V n

2,1, . . . ,V n
N ,1,V n

N+1,1;V n
0,2,V n

1,2,

V n
2,2, . . . ,V n

N ,2,V n
N+1,2; . . . ;V n

0,N+1,V n
1,N+1,V n

2,N+1, . . . ,V n
N+1,N+1

)T
, (29)

with T denoting transpose.
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4.3. The numerical method for u

The equations in (11) will be adapted to obtain approximations to ∂u(xk, ym, tn)/
∂t for use in (3a). The space derivative will be replaced by the approximation

α

(
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2

)
≈ αξuu(x, y, t)

≡ αh−2
[

1
2

{
u(x− h, y, t+ `)− 2u(x, y, t+ `) + u(x+ h, y, t+ `)

}
+

1
2

{
u(x− h, y, t)− 2u(x, y, t) + u(x+ h, y, t)

}
+

1
2

{
u(x, y − h, t+ `)− 2u(x, y, t+ `) + u(x, y + h, t+ `)

}
+

1
2

{
u(x, y − h, t)− 2u(x, y, t) + u(x, y − h, t)

}]
(30)

in which (x, y, t) = (xk, ym, tn). Expanding u(x ± h, y, t + `), u(x ± h, y, t),
u(x, y ± h, t+ `) and u(x, y ± h, t) about (x, y, t) reveals that

α

(
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2

)
− αξuu(x, y, t)

= −α
(

1
2
`uxxt +

1
4
`2uxxtt + · · ·+ 1

12
h2uxxxx + · · ·+ 1

2
`uyyt

+
1
4
`2uyytt + · · · + 1

12
h2uyyyy + · · ·

)
. (31)

Using the expression for M (1)
u in (11) and (30) in (3a) gives

Un+1
k,m − Unk,m

`
−B −

(
Unk,m

)2
V n
k,m + (A+ 1)Unk,m − αξuu(xk, ym, tn) = 0, (32)

adapting M (2)
u in (11) and using (30) in (3a) gives

Un+1
k,m − Unk,m

`
−B −

(
Unk,m

)2
V n+1
k,m + (A+ 1)Un+1

k,m − αξuu(xk, ym, tn) = 0, (33)

while adapting M (3)
u in (11) and using (30) in (3a) gives

Un+1
k,m − Unk,m

`
−B − Unk,mU

n+1
k,m V n

k,m + (A+ 1)Unk,m − αξuu(xk, ym, tn) = 0. (34)

It follows from the analysis of section 2.2 and noting (27) that

Eq. (34) +
1
2

Eq. (33)− 1
2

Eq. (32) (35)
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will give a second-order approximation to (3a). This method is given by

−1
2
αpUn+1

k,m−1 −
1
2
αpUn+1

k−1,m +

[
1− `Unk,mV

n
k,m +

1
2
`(A+ 1) + 2αp

]
Un+1
k,m

− 1
2
αpUn+1

k+1,m −
1
2
αpUn+1

k,m+1 −
1
2
`
(
Unk,m

)2
V n+1
k,m

=
1
2
αpUnk,m−1 +

1
2
αpUnk−1,m +

[
1− 1

2
`Unk,mV

n
k,m −

1
2
`(A+ 1)− 2αp

]
Unk,m

+
1
2
αpUnk+1,m +

1
2
αpUnk,m+1 + `B (36)

and it may be shown that it has local truncation error given by

Lu[u, v;h, `] =− 1
12
αh2(uxxxx +uyyyy) +

[
1
6
utt−

1
2
uvutt−

1
4
u2vtt +

1
4

(A+ 1)utt

− 1
4
uxxtt −

1
4
uyytt

]
`2 + O

(
h4 + `3) as h, `→ 0. (37)

The finite difference method (36) may be applied with k, m = 1, 2, . . . ,N . In
the cases k, m = 0 and k, m = N + 1, (36) introduces mesh points outside Ω ∪ ∂Ω
for which the problem is not defined. However, the boundary conditions (4) give, to
second order in h,

Unk,−1 = Unk,1, Unk,N+2 = Unk,N ; k = 0, 1, . . . ,N + 1,

Un−1,m = Un1,m, UnN+2,m = UnN ,m; m = 0, 1, . . . ,N + 1,
(38)

for all n = 0, 1, 2, . . . . The relations in (38) will be needed in the implementation
of (36) which will be discussed in section 5. It should be noted that, because of the
appearance of the term V n+1

k,m , equation (36) with (38) does not enable the vector Un+1

to be computed until the equivalent numerical method for v has been developed.

4.4. The numerical method for v

Following the approach used in section 4.3, it may be shown that the unique
O(h2 + `2) method for v (as h, `→ 0), analogous to (36), takes the form

−
(

1
2
A− Unk,mV

n
k,m

)
`Un+1

k,m −
1
2
αpV n+1

k,m−1 −
1
2
αpV n+1

k−1,m

+

[
1 +

1
2
`
(
Unk,m

)2
+ 2αp

]
V n+1
k,m −

1
2
αpV n+1

k+1,m −
1
2
αpV n+1

k,m+1

=
1
2
`AUnk,m +

1
2
αpV n

k,m−1 +
1
2
αpV n

k−1,m +

[
1 +

1
2
`
(
Unk,m

)2 − 2αp

]
V n
k,m

+
1
2
αpV n

k+1,m +
1
2
αpV n

k,m+1 (39)
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and that it has local truncation error given by

Lv[u, v;h, `] =− 1
12
αh2(vxxxx + vyyyy) +

[
1
6
vttt −

1
4
Autt +

1
2
uvutt +

1
4
u2vtt

− 1
4
αvxxtt −

1
4
αvyytt

]
`2 + O

(
h4 + `3) as h, `→ 0. (40)

The boundary conditions (4) give, to second-order in h,

V n
k,−1 = V n

k,1, V n
k,N+2 = V n

k,N ; k = 0, 1, . . . ,N + 1,

V n
−1,m = V n

1,m, V n
N+2,m = V n

N ,m; m = 0, 1, . . . ,N + 1,
(41)

for all n = 0, 1, 2, . . . which may be used when k, m = 0 and k, m = N+1. It should
be noted that, because of the occurrence of the term Un+1

k,m , equation (39) with (41)
does not enable the vector Vn+1 to be computed directly. Equations {(36), (38)} and
{(39), (41)} are solved simultaneously to find Un+1 and Vn+1. To do so, they must
be written in matrix–vector form first of all.

Assuming convergence, it is easy to check that, as n → ∞, Uk,m = B and
Vk,m = A/B (k,m = 0, 1, . . . ,N ,N+1) is the only steady-state solution of (36), (39)
for any ` ∈ (0,∞).

5. Implementation

It may be shown that equation (36) with (38) may be written in matrix–vector
form as

EnUn+1 +DnVn+1 = QnUn + `β; n = 0, 1, 2, . . . , (42)

where En, Dn and Qn are square matrices of order (N + 2)2 given by

En =



Cn0 −αpI 0

− 1
2 αpI Cn1 − 1

2 αpI

− 1
2 αpI Cn2 −1

2 αpI
. . . . . . . . .

−1
2 αpI CnN − 1

2 αpI

0 −αpI CnN+1


, (43)

Dn =


dn0 0

dn1
dn2

. . .
0 dnN+1

 , dnm = diag
{
dnk,m

}
, (44)
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Qn =



Qn0 αpI 0
1
2 αpI Qn1

1
2 αpI

1
2 αpI Qn2

1
2 αpI

. . . . . . . . .
1
2 αpI QnN

1
2 αpI

0 αpI QnN+1


, (45)

in which I is the identity matrix of order N + 2,

Cnm =



cn0,m −αp 0

− 1
2 αp cn1,m − 1

2 αp

− 1
2 αp cn2,m − 1

2 αp
. . . . . . . . .

− 1
2 αp cnN ,m − 1

2 αp

0 −αp cnN+1,m


, (46)

Qnm =



qn0,m αp 0
1
2 αp qn1,m

1
2 αp

1
2 αp qn2,m

1
2 αp

. . . . . . . . .
1
2 αp qnN ,m

1
2 αp

0 αp qnN+1,m


, (47)

are square matrices of order N + 2 with

cnk,m = 1− `Unk,mV
n
k,m +

1
2
`(A+ 1) + 2αp,

dnk,m =−1
2
`
(
Unk,m

)2
, (48)

qnk,m = 1− 1
2
`Unk,mV

n
k,m −

1
2
`(A+ 1)− 2αp

(k,m = 0, 1, . . . ,N ,N + 1), and β is an (N + 2)-vector given by

β = [B,B, . . . ,B,B]T. (49)

Similarly, equation (39) with (41) may be written in matrix–vector form as

ΓnUn+1 + TnVn+1 = RUn + ΨnVn; n = 0, 1, 2, . . . , (50)
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where Γn, Tn, R and Ψn are square matrices of order (N + 2)2 given by

Tn =



Fn0 −αpI 0
− 1

2 αpI Fn1 −1
2 αpI

− 1
2 αpI Fn2 − 1

2 αpI
. . . . . . . . .

− 1
2 αpI FnN − 1

2 αpI
0 −αpI FnN+1

 , (51)

Γn =


Gn0 0

Gn1
Gn2

. . .
0 GnN+1

 , (52)

Ψn =



Sn0 αpI 0
1
2 αpI Sn1

1
2 αpI

1
2 αpI Sn2

1
2 αpI

. . . . . . . . .
1
2 αpI SnN

1
2 αpI

0 αpI SnN+1

 , (53)

R=


1
2 `AI 0

1
2 `AI

1
2 `AI

. . .
0 1

2 `AI

 , (54)

in which

Fnm =



fn0,m −αp 0
− 1

2 αp fn1,m − 1
2 αp

− 1
2 αp fn2,m −1

2 αp
. . . . . . . . .

−1
2 αp fnN ,m − 1

2 αp
0 −αp fnN+1,m


(55)

and

Snm =



sn0,m αp 0
1
2 αp sn1,m

1
2 αp

1
2 αp sn2,m

1
2 αp

. . .
. . .

. . .
1
2 αp snN ,m

1
2 αp

0 αp snN+1,m


(56)
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are square matrices of order N + 2 with

fnk,m = 1 + `
(
Unk,m

)2
+ 2αp,

(57)
snk,m = 1 +

1
2
`
(
Unk,m

)2 − 2αp

(k,m = 0, 1, . . . ,N ,N + 1), and

Gnm = diag
{
gnk,m

}
= diag

{
`

(
Unk,mV

n
k,m −

1
2
A

)}
(58)

is a diagonal matrix of order N + 2.
Since Dn and Γn are diagonal matrices, equations (42) and (50) may be solved

for Un+1 and Vn+1, which may then be computed in parallel on an architecture with
two processors as follows:

Processor 1: Solve for Un+1:(
Tn
(
Dn
)−1

En − Γn
)
Un+1 =

(
Tn
(
Dn
)−1

Qn −R
)
Un −ΨnVn + `Tn

(
Dn
)−1

β.
(59)

Processor 2: Solve for Vn+1:(
En
(
Γn
)−1

Tn−Dn
)
Vn+1 =

(
En
(
Γn
)−1

R−Qn
)
Un +En

(
Γn
)−1ΨnVn− `β.

It should be noted that each processor solves a linear algebraic system of order (N+2)2

at each time level tn = n` (n = 0, 1, 2, . . .) even though the system of PDEs (3) is
non-linear.

6. Stability and convergence

Writing (42) and (50) as one system of order 2(N + 2)2 gives

KnYn+1 = MnYn + `b, (60)

in which

Kn =

[
En Dn

Γn Tn

]
, (61)

Mn =

[
Qn O
R Ψn

]
, (62)

and

Yn =
[(

Un
)T

,
(
Vn
)T]T

, Yn+1 =
[(

Un+1)T
,
(
Vn+1)T]T

, b =
[
βT, 0T]T. (63)

In (62), O is the zero matrix of order N + 2 and in (63), 0 is the zero column vector
of order N + 2. The matrix method requires∥∥(Kn

)−1
Mn

∥∥
S
6 1 (64)
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for stability, S denoting the spectral norm. This localized condition must be satisfied
at every time step. The inverse matrix (Kn)−1 can be determined using, for instance,
NAG (Numerical Algorithms Group) routine F01ACF following which its spectral
norm may be calculated using NAG routine F02AFF. It is not possible to find in
closed form a necessary condition for stability involving A, B, h and ` using, say, a
linearization of the von Neumann method. This is because Un and Vn are coupled
in (59).

Assuming that a steady-state is reached, diffusion no longer takes place (α = 0)
and equations (36) and (39) reduce to[

1− `Unk,mV
n
k,m +

1
2
`(A+ 1)

]
Un+1
k,m −

1
2
`
(
Unk,m

)2
V n+1
k,m

=

[
1− 1

2
`Unk,mV

n
k,m −

1
2
`(A+ 1)

]
Unk,m + `B (65)

and

−
(

1
2
A− Unk,mV

n
k,m

)
`Un+1

k,m +

[
1 +

1
2
`
(
Unk,m

)2
]
V n+1
k,m

=
1
2
`AUnk,m +

[
1 +

1
2
`
(
Unk,m

)2
]
V n
k,m, (66)

respectively. Equations (65) and (66) are clearly equivalent to (17) and (23) and it
follows from the analysis of section 2.4 that Unk,m → B and V n

k,m → A/B (k,m =

0, 1, . . . ,N ,N + 1) as n→∞ for any ` ∈ (0,∞) provided 1−A+B2 > 0. The pair
(U ,V ) = (B,A/B) is the unique steady-state of (36) and (39).

Figure 7. Profile of U at t = 5 for A = 1, B = 2 and α = 0.002 with h = 0.1 and ` = 0.001.
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7. Numerical experiments

Following Adomian [1], the PDEs (3) subject to the boundary conditions (4) and
initial conditions (5) with f (x, y, 0) = 2 + 0.25y and g(x, y, 0) = 1 + 0.8x are solved
using the second-order methods (36) and (39). The constants A, B and α are given
the values 1, 2 and 0.002, respectively. The discretization parameters h and ` are
given the values 1/10 and 1/1000, respectively. The concentration profiles of u and v
computed at time t = 1 are depicted in figures 7 and 8, respectively. It is clear from
figures 7 and 8 that, for these values of h, ` and α, the numerical method is stable
for this combination of A and B. Figures 9 and 10 depict profiles for U and V at

Figure 8. Profile of V at t = 5 for A = 1, B = 2 and α = 0.002 with h = 0.1 and ` = 0.001.

Figure 9. Profile of U at t = 1 for A = 3.4, B = 1 and α = 0.002 with h = 0.1 and ` = 0.001.
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Figure 10. Profile of V at t = 1 for A = 3.4, B = 1 and α = 0.002 with h = 0.1 and ` = 0.001.

time t = 1 for A = 3.4 and B = 1, using the same values of α, h and `. It is clear
from these figures that the solution is unstable. This experiment was repeated with
various combinations of A and B within the interval 1 6 A,B 6 5. The computed
results at t = 5 reveal that, like in the diffusion-free “Brusselator” system, whenever
the parameters A and B are chosen such that 1 − A + B2 > 0, the concentration
profiles of u and v converge to the fixed point (u, v) = (B,A/B), and for values of A
and B such that 1−A+B2 < 0, the numerical method is seen not to converge to any
fixed concentration.

8. Conclusion

A second-order numerical method has been developed for the initial-value prob-
lems ut = A + u2v − (A + 1)u and vt = Au − u2v in which u(0) = U0, v(0) = V 0

and A and B are real constants. The approach adopted was extended to solve two
non-linear two-dimensional reaction–diffusion equations known as the “Brusselator”
system. The numerical solution is obtained using two processors running concurrently,
each solving a single linear algebraic system by employing a quin-diagonal solver at
every time step.

References

[1] G. Adomian, The diffusion Brusselator equation, Comput. Math. Appl. 29(5) (1995) 1.
[2] R.L. Burden and J.D. Faires, Numerical Analysis (Brooks/Cole, Pacific Grove, CA, 1997) (6th

edition).
[3] Y.S. Chen and A.Y.T. Leung, Bifurcations and Chaos in Engineering (Springer-Verlag, Berlin,

1998).



316 E.H. Twizell et al. / A second-order scheme for the Brusselator system

[4] J. Gukenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of
Vector Fields (Springer-Verlag, Berlin, 1983).

[5] M. Herschkowitz-Kaufman and G. Nicolis, Localized spatial structures and non-linear chemical
waves in dissipative systems, J. Chem. Phys. 56 (1972) 1890.

[6] B. Lavenda, G. Nicolis and M. Herschkowitz-Kaufman, Chemical instabilities and relaxation oscil-
lations, J. Theor. Biol. 32 (1971) 283.

[7] R. Lefever, Dissipative structures in chemical systems, J. Chem. Phys. 49(11) (1968) 4977.
[8] R. Lefever and G. Nicolis, Chemical instabilities and sustained oscillations, J. Theor. Biol. 30 (1971)

267.
[9] G. Nicolis and I. Prigogine, Self-organization in Non-equilibrium Systems (Wiley Interscience, New

York, 1977).
[10] I. Prigogine and R. Lefever, Symmetry breaking instabilities in dissipative systems II, J. Chem.

Phys. 48 (1968) 1695.
[11] A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. Roy. Soc. London Ser. B 237

(1952) 37.
[12] E.H. Twizell, Yigong Wang and W.G. Price, Chaos-free numerical solutions of reaction–diffusion

equations, Proc. Roy. Soc. London Ser. A 430 (1990) 541.
[13] J. Tyson, Some further studies of non-linear oscillations in chemical systems, J. Chem. Phys. 58

(1973) 3919.


